ARKit OpenGL实现篇
获取示例代码,本文代码在分支ARKit中。
如果你想了解ATRKit的基础知识,请访问ARKit原理篇
本文所用OpenGL基础代码来自OpenGL ES系列,具备渲染几何体,纹理等基础功能,实现细节将不赘述。
集成ARKit的关键代码都在ARGLBaseViewController
中。我们来看一下它的代码。
处理ARFrame
- (void)session:(ARSession *)session didUpdateFrame:(ARFrame *)frame {
// 同步YUV信息到 yTexture 和 uvTexture
CVPixelBufferRef pixelBuffer = frame.capturedImage;
GLsizei imageWidth = (GLsizei)CVPixelBufferGetWidthOfPlane(pixelBuffer, 0);
GLsizei imageHeight = (GLsizei)CVPixelBufferGetHeightOfPlane(pixelBuffer, 0);
void * baseAddress = CVPixelBufferGetBaseAddressOfPlane(pixelBuffer, 0);
glBindTexture(GL_TEXTURE_2D, self.yTexture);
glTexImage2D(GL_TEXTURE_2D, 0, GL_LUMINANCE, imageWidth, imageHeight, 0, GL_LUMINANCE, GL_UNSIGNED_BYTE, baseAddress);
glBindTexture(GL_TEXTURE_2D, 0);
imageWidth = (GLsizei)CVPixelBufferGetWidthOfPlane(pixelBuffer, 1);
imageHeight = (GLsizei)CVPixelBufferGetHeightOfPlane(pixelBuffer, 1);
void *laAddress = CVPixelBufferGetBaseAddressOfPlane(pixelBuffer, 1);
glBindTexture(GL_TEXTURE_2D, self.uvTexture);
glTexImage2D(GL_TEXTURE_2D, 0, GL_LUMINANCE_ALPHA, imageWidth, imageHeight, 0, GL_LUMINANCE_ALPHA, GL_UNSIGNED_BYTE, laAddress);
glBindTexture(GL_TEXTURE_2D, 0);
self.videoPlane.yuv_yTexture = self.yTexture;
self.videoPlane.yuv_uvTexture = self.uvTexture;
[self setupViewport: CGSizeMake(imageHeight, imageWidth)];
// 同步摄像机
matrix_float4x4 cameraMatrix = matrix_invert([frame.camera transform]);
GLKMatrix4 newCameraMatrix = GLKMatrix4Identity;
for (int col = 0; col < 4; ++col) {
for (int row = 0; row < 4; ++row) {
newCameraMatrix.m[col * 4 + row] = cameraMatrix.columns[col][row];
}
}
self.cameraMatrix = newCameraMatrix;
GLKVector3 forward = GLKVector3Make(-self.cameraMatrix.m13, -self.cameraMatrix.m23, -self.cameraMatrix.m33);
GLKMatrix4 rotationMatrix = GLKMatrix4MakeRotation(M_PI / 2, forward.x, forward.y, forward.z);
self.cameraMatrix = GLKMatrix4Multiply(rotationMatrix, newCameraMatrix);
}
上面的代码展示了如何处理ARKit捕捉的ARFrame,ARFrame
的capturedImage
存储了摄像头捕捉的图片信息,类型是CVPixelBufferRef
。默认情况下,图片信息的格式是YUV,通过两个Plane
来存储,也可以理解为两张图片。一张格式是Y(Luminance),保存了明度信息,另一张是UV(Chrominance、Chroma),保存了色度和浓度。我们需要把这两张图分别绑定到不同的纹理上,然后在Shader中利用算法将YUV转换成RGB。下面是处理纹理的Fragment Shader,利用公式进行颜色转换。
precision highp float;
varying vec3 fragNormal;
varying vec2 fragUV;
uniform float elapsedTime;
uniform mat4 normalMatrix;
uniform sampler2D yMap;
uniform sampler2D uvMap;
void main(void) {
vec4 Y_planeColor = texture2D(yMap, fragUV);
vec4 CbCr_planeColor = texture2D(uvMap, fragUV);
float Cb, Cr, Y;
float R ,G, B;
Y = Y_planeColor.r * 255.0;
Cb = CbCr_planeColor.r * 255.0 - 128.0;
Cr = CbCr_planeColor.a * 255.0 - 128.0;
R = 1.402 * Cr + Y;
G = -0.344 * Cb - 0.714 * Cr + Y;
B = 1.772 * Cb + Y;
vec4 videoColor = vec4(R / 255.0, G / 255.0, B / 255.0, 1.0);
gl_FragColor = videoColor;
}
处理并绑定好纹理后,为了保证不同屏幕尺寸下,纹理不被非等比拉伸,所以对viewport
进行重了新计算[self setupViewport: CGSizeMake(imageHeight, imageWidth)];
。接下来将ARKit计算出来的摄像机的变换赋值给self.cameraMatrix
。注意ARKit捕捉的图片需要旋转90度后才能正常显示,所以在设置Viewport时特意颠倒了宽和高,并在最后对摄像机进行了旋转。
VideoPlane
VideoPlane是为了显示视频编写的几何体,它能够接收两个纹理,Y和UV。
@interface VideoPlane : GLObject
@property (assign, nonatomic) GLuint yuv_yTexture;
@property (assign, nonatomic) GLuint yuv_uvTexture;
- (instancetype)initWithGLContext:(GLContext *)context;
- (void)update:(NSTimeInterval)timeSinceLastUpdate;
- (void)draw:(GLContext *)glContext;
@end
...
- (void)draw:(GLContext *)glContext {
[glContext setUniformMatrix4fv:@"modelMatrix" value:self.modelMatrix];
bool canInvert;
GLKMatrix4 normalMatrix = GLKMatrix4InvertAndTranspose(self.modelMatrix, &canInvert);
[glContext setUniformMatrix4fv:@"normalMatrix" value:canInvert ? normalMatrix : GLKMatrix4Identity];
[glContext bindTextureName:self.yuv_yTexture to:GL_TEXTURE0 uniformName:@"yMap"];
[glContext bindTextureName:self.yuv_uvTexture to:GL_TEXTURE1 uniformName:@"uvMap"];
[glContext drawTrianglesWithVAO:vao vertexCount:6];
}
其他的功能很简单,就是绘制一个正方形,最终配合显示视频的Shader,渲染YUV格式的数据。
透视投影矩阵
在ARFrame可以获取渲染需要的纹理和摄像机矩阵,除了这些,和真实摄像头匹配的透视投影矩阵也是必须的。它能够让渲染出来的3D物体透视看起来很自然。
- (void)session:(ARSession *)session cameraDidChangeTrackingState:(ARCamera *)camera {
matrix_float4x4 projectionMatrix = [camera projectionMatrixWithViewportSize:self.viewport.size orientation:UIInterfaceOrientationPortrait zNear:0.1 zFar:1000];
GLKMatrix4 newWorldProjectionMatrix = GLKMatrix4Identity;
for (int col = 0; col < 4; ++col) {
for (int row = 0; row < 4; ++row) {
newWorldProjectionMatrix.m[col * 4 + row] = projectionMatrix.columns[col][row];
}
}
self.worldProjectionMatrix = newWorldProjectionMatrix;
}
上面的代码演示了如何通过ARKit获取3D透视投影矩阵,有了透视投影矩阵和摄像机矩阵,就可以很方便的利用OpenGL渲染物体了。
- (void)glkView:(GLKView *)view drawInRect:(CGRect)rect {
[super glkView:view drawInRect:rect];
[self.objects enumerateObjectsUsingBlock:^(GLObject *obj, NSUInteger idx, BOOL *stop) {
[obj.context active];
[obj.context setUniform1f:@"elapsedTime" value:(GLfloat)self.elapsedTime];
[obj.context setUniformMatrix4fv:@"projectionMatrix" value:self.worldProjectionMatrix];
[obj.context setUniformMatrix4fv:@"cameraMatrix" value:self.cameraMatrix];
[obj.context setUniform3fv:@"lightDirection" value:self.lightDirection];
[obj draw:obj.context];
}];
}
本文主要介绍了OpenGL ES渲染ARKit的基本思路,没有对OpenGL ES技术细节描述太多。如果你有兴趣,可以直接clone Github上的代码深入了解。